skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gao, Zhen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 1, 2025
  2. ABSTRACT Submillimetre galaxies represent a rapid growth phase of both star formation and massive galaxies. Mapping SMGs in galaxy protoclusters provides key insights into where and how these extreme starbursts take place in connections with the assembly of the large-scale structure in the early Universe. We search for SMGs at 850 $$\rm{\mu m}$$ using JCMT/SCUBA-2 in two massive protoclusters at z = 2.24, BOSS1244 and BOSS1542, and detect 43 and 54 sources with S850 > 4 mJy at the 4σ level within an effective area of 264 arcmin2, respectively. We construct the intrinsic number counts and find that the abundance of SMGs is 2.0 ± 0.3 and 2.1 ± 0.2 times that of the general fields, confirming that BOSS1244 and BOSS1542 contain a higher fraction of dusty galaxies with strongly enhanced star formation. The volume densities of the SMGs are estimated to be ∼15–30 times the average, significantly higher than the overdensity factor (∼6) traced by H α emission-line galaxies (HAEs). More importantly, we discover a prominent offset between the spatial distributions of the two populations in these two protoclusters – SMGs are mostly located around the high-density regions of HAEs, and few are seen inside these regions. This finding may have revealed for the first time the occurrence of violent star formation enhancement in the outskirts of the HAE density peaks, likely driven by the boosting of gas supplies and/or starburst triggering events. Meanwhile, the lack of SMGs inside the most overdense regions at z ∼ 2 implies a transition to the environment disfavouring extreme starbursts. 
    more » « less
  3. null (Ed.)
  4. Abstract China has increased its vegetation coverage and enhanced its terrestrial carbon sink through ecological restoration since the end of the 20th century. However, the temporal variation in vegetation carbon sequestration remains unclear, and the relative effects of climate change and ecological restoration efforts are under debate. By integrating remote sensing and machine learning with a modelling approach, we explored the biological and physical pathways by which both climate change and human activities (e.g., ecological restoration, cropland expansion, and urbanization) have altered Chinese terrestrial ecosystem structures and functions, including vegetation cover, surface heat fluxes, water flux, and vegetation carbon sequestration (defined by gross and net primary production, GPP and NPP). Our study indicated that during 2001–2018, GPP in China increased significantly at a rate of 49.1–53.1 TgC/yr2, and the climatic and anthropogenic contributions to GPP gains were comparable (48%–56% and 44%–52%, respectively). Spatially, afforestation was the dominant mechanism behind forest cover expansions in the farming‐pastoral ecotone in northern China, on the Loess Plateau and in the southwest karst region, whereas climate change promoted vegetation cover in most parts of southeastern China. At the same time, the increasing trend in NPP (22.4–24.9 TgC/yr2) during 2001–2018 was highly attributed to human activities (71%–81%), particularly in southern, eastern, and northeastern China. Both GPP and NPP showed accelerated increases after 2010 because the anthropogenic NPP gains during 2001–2010 were generally offset by the climate‐induced NPP losses in southern China. However, after 2010, the climatic influence reversed, thus highlighting the vegetation carbon sequestration that occurs with ecological restoration. 
    more » « less